pH-Testing – a no brainer?

Rapid Tests

Dr. Christian Prokisch, 31.10.2020

MACHEREY-NAGEL

www.mn-net.com

Agenda

Company

pH-testing experience

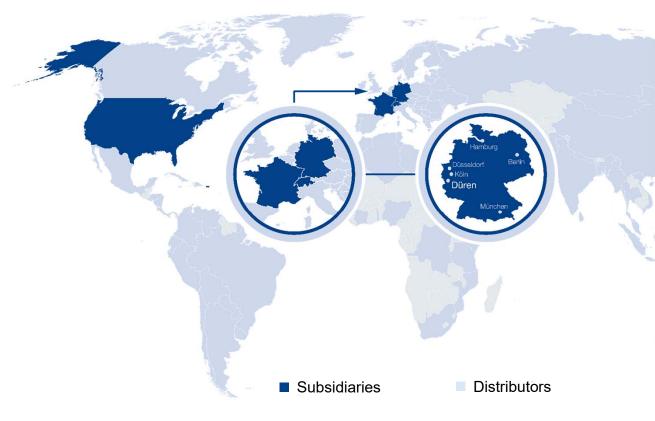
pH uncertainty

pH buffering

Summary

Company

MN Water Analysis



Company

MN today

- 4th Generation family owned
- More than 700 employees
- More than 25.000 products
- Turnover 120 Mio. €

Company

Business units

1911

1959

Rapid Tests

1961

Chromatography

1970

Water Analysis

1989

Bioanalysis

Company – MN Water Analysis

Safe and easy NANOCOLOR® Tube Tests

- Barcoded tubes
- Color coded labels
- EPA compliant POTW parameter tests

Company – MN Water Analysis

Rapid and reliable dip & read tests

Qualitative test papers

pH-tests

Semi-quantitative test strips

Company – MN Water Analysis

QUANTOFIX® Relax – Automated reader for test strips

- Easy use
- Objective readings
- QUANTOFIX® and pH-Fix test strips
- Data export via data export software

Water sample preserved at pH=2

- In general: correct reading
- pH 1 and pH 3 can easily be distinguished
 - Reliable results
 - Easy to use
 - ...

Rain water

Type / Brand	Strip read-off
a	5
b	6
С	7

- Different strips give different results
- Solution:
 - Take the one that best meets your expectations?

Desalted water

рН	Read-off A	Read-off B
5	5.5	6.5
5.5	5.5	6.5
6	5.5	6.5
6.5	5.5	6.5
7	5.5	6.5

- Both are reliable manufacturers, well known brands
- Which brand is the best?
- Solution:
 - Take the one that best meets your expectations?

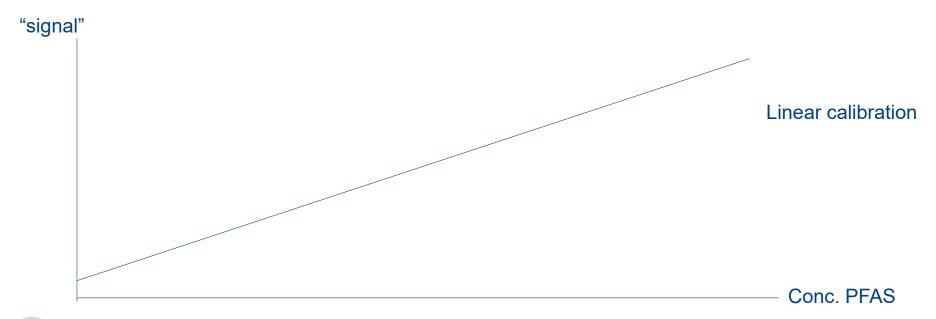
Urine

рН	Read-off A	Read-off B
5.5	5.5	5.5
6.0	5.0	5.0
6.5	6.5	6.5
7.0	7.0	7.0
7.5	7.5	7.5

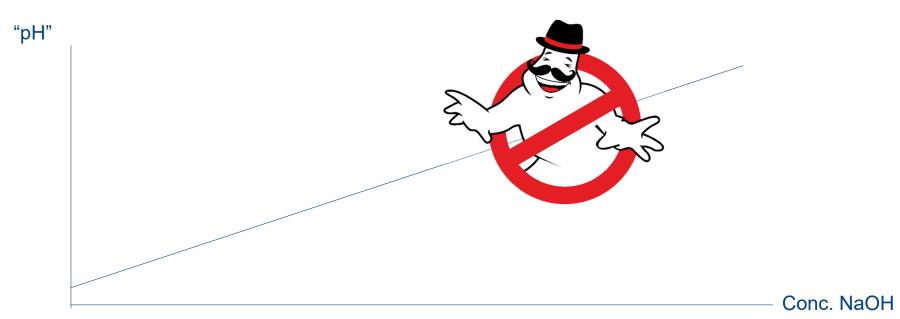
- Both are reliable manufacturers, well known brands
- Which brand is the best?
- Solution:
 - You may take either

Summary

- Both are reliable manufacturers, well known brands
- Both behave very similar

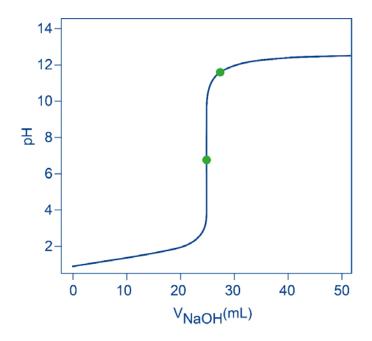

рН	Brand A	Brand B
pH 2 preserved sample	good	good
Rainwater	Not good	Not good
Desalted water	Not good	Not good
Urine	good	good

Typical calibration



Uncertainty lowest in the middle of the range

pH – intuitive expectation



pH different from most other analytes

Titration curve

Uncertainty highest in the middle of the range (pH = 7)

pH understanding

- Basic definition
 - pH = $-\log_{10} ([H_3O^+])...$
 - [H3O+]*[OH-]=10⁻¹⁴
- Logarithmic relationship
 - Like exponential relationships very difficult to "feel"
- "Concentration" lowest in the middle of range...

Concentration of analyte

- "Analyte" concentration in this case:
 - [H3O+] + [OH-]

рН	[H ₃ O ⁺]	[OH ⁻]	[H ₃ O ⁺] + [OH ⁻]
1	10 ⁻¹	10 ⁻¹³	10 ⁻¹
2	10 ⁻²	10 ⁻¹²	10-2
7	10 -7	10 - ⁷	2*10 ⁻⁷
13	10 ⁻¹³	10 ⁻¹	10 ⁻¹

Concentration lowest← in the middle of the range

Capability of test strips

• Example, Nitrate

• Detection limit: 10 mg/L

Molar weight: 62 g/mol

• => $1,6 * 10^{-3} \text{ mol/L}$

• Rule of thumb for test strip detection limits:

• Regular = about 10⁻³ mol/L

• High performance = about 10⁻⁴ mol/L

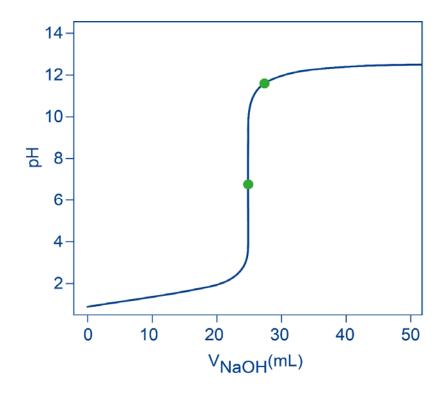
Exceptions apply

What does it mean for pH-strips?

- Similar limits apply
- In pure (!) water
 - pH test papers should NOT be used in the range pH 4-9
 - Between pH = 4 and pH = 9 papers show a value that is a property of the strip rather than a property of the sample

рН	[H ₃ O ⁺]	[OH-]	[H ₃ O ⁺] + [OH ⁻]
1	10 ⁻¹	10 ⁻¹³	10-1
3	10 ⁻³	10 ⁻¹¹	10 ⁻³
5	10 ⁻⁵	10 ⁻⁹	10 ⁻⁵
7	10 ⁻⁷	10 ⁻⁷	2*10 ⁻⁷
9	10 ⁻⁹	10 ⁻⁵	10-5
11	10-11	10 ⁻³	10 ⁻³
13	10 ⁻¹³	10-1	10-1

What we saw before...


pH	Brand A	Brand B	
pH 2 preserved sample	good	good	← Understood
Rainwater	Not good	Not good	← Understood (pH between 4 and 9)
Desalted water	Not good	Not good	← Understood (pH between 4 and 9)
Urine	good	good	← Why does this work?

If we only had this...

...nature would be different

- Most processes in nature require a pH of 4-8
- pH 4-8 very difficult to maintain only with strong acids and bases
- Nature provides weak acids and buffer substances
 - Acetic acid / acetate (pH 4.7)
 - Hydrogenphoshate /Dihydrogenphosphate (pH 7.2)
 - Citrict acid / citrate (pH 4.2)
 - ...

What we saw before...

рН	Brand A	Brand B	
pH 2 preserved sample	good	good	← Understood
Rainwater	Not good	Not good	← Understood (pH between 4 and 9)
Desalted water	Not good	Not good	← Understood (pH between 4 and 9)
Urine	good	good	← Understood (buffering)

Summary

Summary

pH test strips

- pH strips
 - Widely used
 - Reliable results
 - Easy to use
- Be aware of pH-active substance concentrations ≤ 10⁻³ mol/L
- ASTM standard is in preparation

Thank you for your attention!

Dr. Christian Prokisch I cprokisch@mn-net.com I +49-2421-969-166

Image credits

© Artem Furman (1), darknightsky (10), SG- design (11 und 26), BRAD (12), Ilhnklv (17), jolopes(19) - Fotolia